A pr 1 99 9 POINTS OF BOUNDED HEIGHT ON EQUIVARIANT COMPACTIFICATIONS OF VECTOR GROUPS
نویسنده
چکیده
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 § 1. Geometry, heights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 § 2. The local Fourier transform at the trivial character . . . . . . 5 § 3. The local Fourier transform at a non-trivial character . . 9 § 4. The height zeta function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
منابع مشابه
5 F eb 1 99 9 POINTS OF BOUNDED HEIGHT ON EQUIVARIANT COMPACTIFICATIONS OF VECTOR GROUPS , I by Antoine Chambert - Loir & Yuri Tschinkel
— We prove asymptotic formulas for the number of rational points of bounded height on certain equivariant compactifications of the affine plane. Résumé. — Nous établissons un développement asymptotique du nombre de points rationnels de hauteur bornée sur certaines compactifications équivariantes du plan affine.
متن کاملIntegral Points of Bounded Height on Compactifications of Semi-simple Groups
We study the asymptotic distribution of integral points of bounded height on partial bi-equivariant compactifications of semisimple groups of adjoint type.
متن کاملRational Points on Compactifications of Semi-simple Groups of Rank
— We explain our approach to the problem of counting rational points of bounded height on equivariant compactifications of semi-simple groups.
متن کاملDistribution of rational points of bounded height on equivariant compactifications of PGL2 I
Distribution of rational points of bounded height on equivariant compactifications of PGL 2 I Takloo-Bighash, Ramin; Tanimoto, Sho Published in: Research in Number Theory DOI: 10.1007/s40993-016-0037-7 Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Citation for published version (APA): Takloo-Bighash, R., & Tanimoto, S. (2016). Distribution of rational ...
متن کاملBalanced Line Bundles and Equivariant Compactifications of Homogeneous Spaces
Manin’s conjecture predicts an asymptotic formula for the number of rational points of bounded height on a smooth projective variety X in terms of global geometric invariants of X. The strongest form of the conjecture implies certain inequalities among geometric invariants of X and of its subvarieties. We provide a general geometric framework explaining these phenomena, via the notion of balanc...
متن کامل